

PREVENTION OF CARDIOVASCULAR DISEASE

Brendan M. Everett, MD, MPH
Associate Physician, Brigham and Women's Hospital
Divisions of Cardiovascular Medicine and Preventive Medicine
Brigham and Women's Hospital
Associate Professor
Harvard Medical School

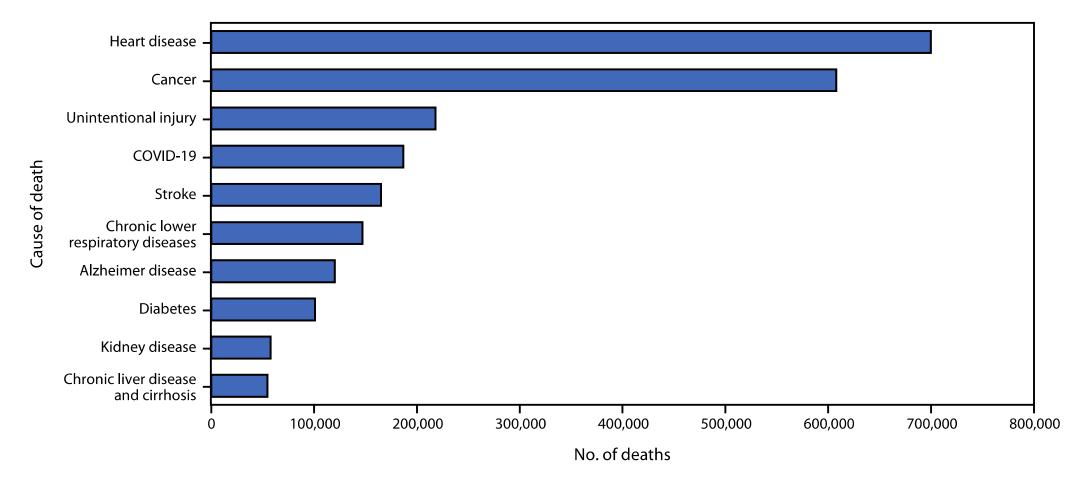
Brendan M. Everett, MD, MPH

- Harvard Medical School
- Medicine Residency at MGH
- Cardiovascular Medicine Fellowship at MGH
- Harvard School of Public Health (MPH)
- Associate Professor of Medicine HMS
 - Clinical focus: preventive cardiology, lipids, valvular heart disease
 - Research focus: inflammation, diabetes and cardiovascular disease

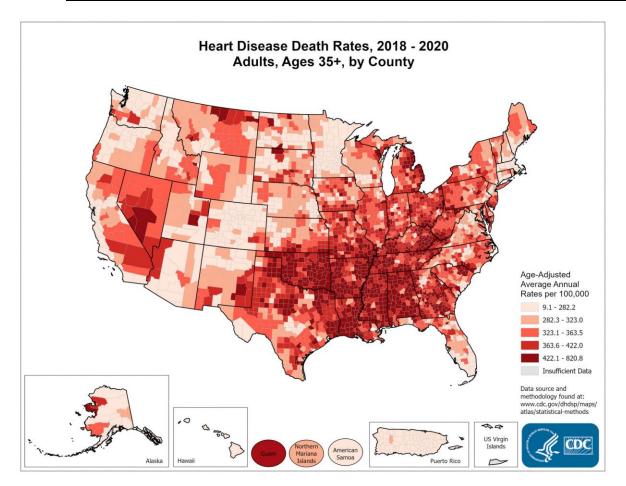
Disclosures

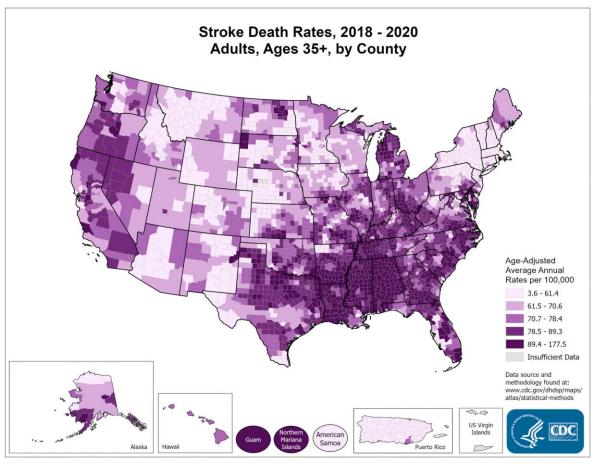
- Consulting or Investigator Initiated Grants from
 - PCORI
 - Novo Nordisk
 - Eli Lilly and Company
 - Kowa
 - Circulation
 - Up to Date
 - FDA
 - NIDDK

Cardiovascular Disease Prevention: Key Learning Objectives

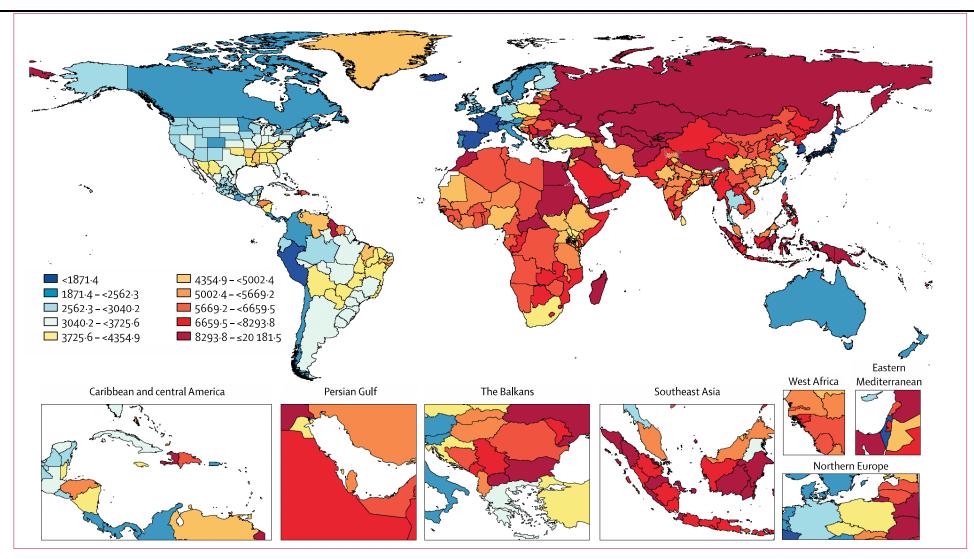

- Describe the prevalence of cardiovascular disease (CVD) in the US and around the world
- Identify CVD risk factors and behaviors
- Understand the evidence base that supports recommendations for CVD prevention, including for
 - Diet
 - Exercise
 - Smoking cessation
 - Blood pressure control
 - Risk estimation and prediction
 - Lipid lowering therapy
 - Use (or non-use) of aspirin

Provisional Mortality Data in the United States in 2022


FIGURE 2. Leading underlying causes of death*,† — National Vital Statistics System, United States, 2022



Deaths due to Heart Disease and Stroke



Age-Standardized Disability Adjusted Life Year Rates (per 100,000) in 2019

Global Burden of Cardiovascular Diseases

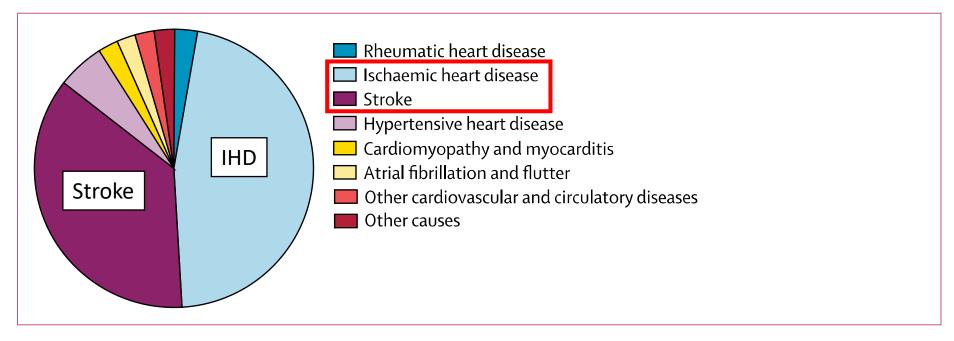


Figure 1: Composition of DALYs by constituent Level 3 causes for both sexes combined, 2019

Percentage of CV Disability Attributable to Common Risk Factors

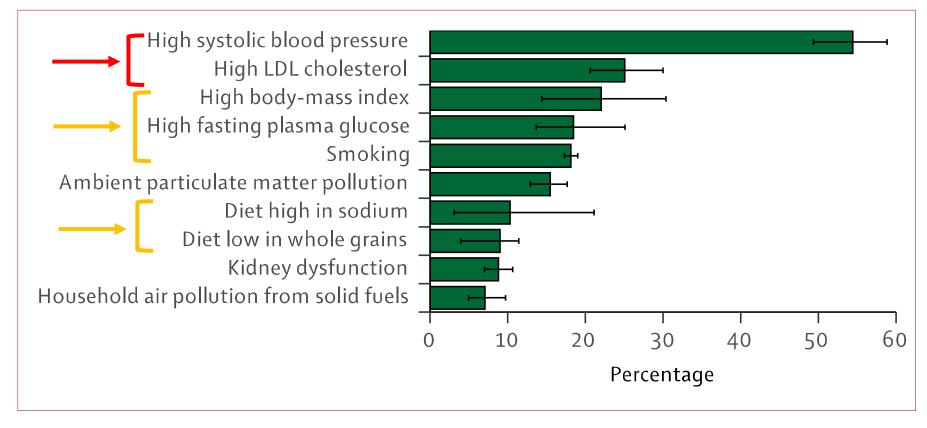


Figure 2: Percentage of DALYs attributable to top risk factors for both sexes combined, 2019

Diet

Why do we care about diet?

- Everyone has to eat
- What you eat clearly has a huge impact on health
- However, the evidence for the effects of diet are usually observational studies
- Observational studies of diet and nutrition are particularly prone to bias and confounding
- Randomized trials of diet face challenges of adherence, short duration, and surrogate endpoints (BP, weight, lipids)

Evidence-based Cardiovascular Disease Prevention

The New York Times

OPINION GUEST ESSAY

The Science of What We Eat Is Failing Us

June 19, 2023, 5:00 a.m. ET

Illustration by The New York Times

Diet: Cardiovascular Disease Prevention

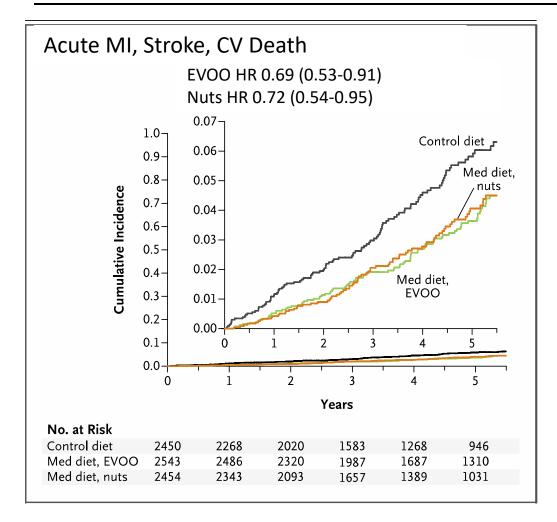
 Which diets have been shown to prevent major adverse cardiovascular events?

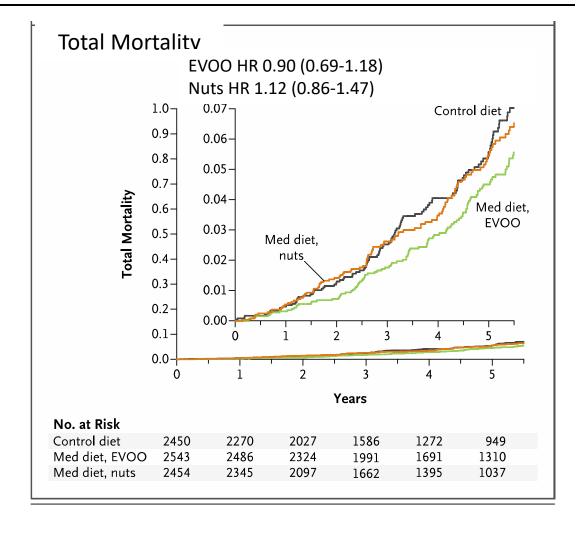
 Which diets have been shown to modify known cardiovascular risk factors, such as blood pressure, lipids, or weight?

- Common Patient FAQs
 - What should I tell my patients about intermittent fasting or keto diets?
 - What should I tell my patients about drinking alcohol?
 - What's the latest news on eggs? Do they cause heart disease?

Diet RCTs with MACE as an outcome

- PREDIMED (published, retracted, republished high risk primary prevention)
- LYON HEART STUDY (post MI patients)
- DART (post MI patients)


PREDIMED


- Conducted in Spain
- 7447 participants at high CV risk but without established CVD
 - Mediterranean diet supplemented with EVOO
 - Mediterranean diet supplemented with mixed nuts
 - Control diet (advice to reduce dietary fat intake)
- Primary outcome: MACE (MI, stroke, CV death)
- Median follow up 4.8 years
- Stopped early for efficacy
- HOWEVER, a number of protocol deviations, including household member randomization, assignment without randomization, and inconsistent use of randomization tables led to a retraction and reanalysis of the data

PREDIMED Republished 2018

PREDIMED: Body weight and waist circumference

No significant effects of randomly assigned treatment group on weight or waist circumference

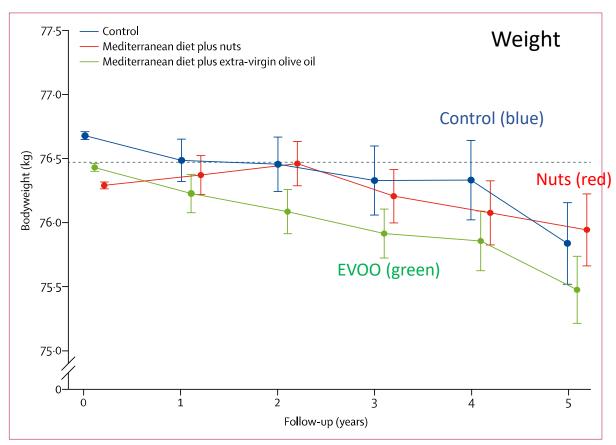


Figure 2: Multivariable-adjusted average bodyweight of PREDIMED participants during follow-up, by intervention group

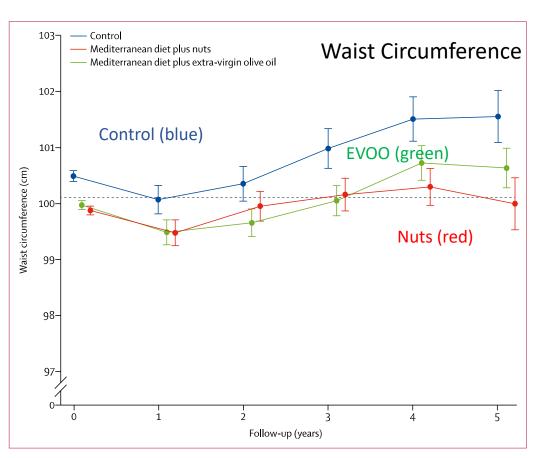
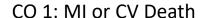


Figure 3: Multivariable-adjusted average waist circumference of PREDIMED participants during follow-up, by intervention group

Lyon Heart Study

- Randomized, single blind trial of Mediterranean diet vs. "prudent"
 Western-type diet to reduce recurrence after a first MI
- 423 patients randomized
- Mean follow up was 45-46 months


- Primary outcomes:
 - CO1: MI or CVD death
 - CO2: MI, unstable angina, HF, stroke, pulmonary or peripheral embolism, or CV death
 - CO3: CO2 PLUS hospital admission, recurrent stable angina, postangioplasty restenosis, surgical or percutaneous revasc, thrombophlebitis

Lancet. 1994 Jun 11;343(8911):1454-9. doi: 10.1016/s0140-6736(94)92580-1. de Lorgeril M et al. Circulation. 1999;99:779-785.

Lyon Heart Study

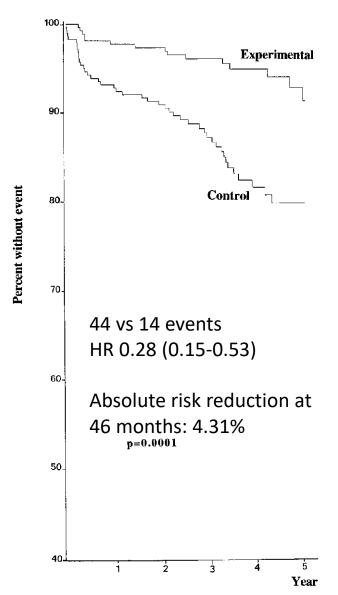


Figure 1. Cumulative survival without nonfatal myocardial infarction (CO 1) among experimental (Mediterranean group) patients and control subjects.

CO 2: MI, unstable angina, HF, stroke, pulmonary or peripheral embolism, or CV death

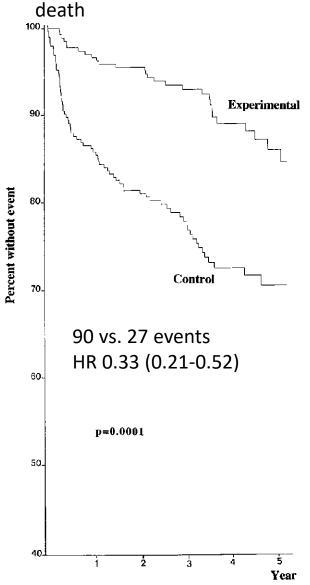
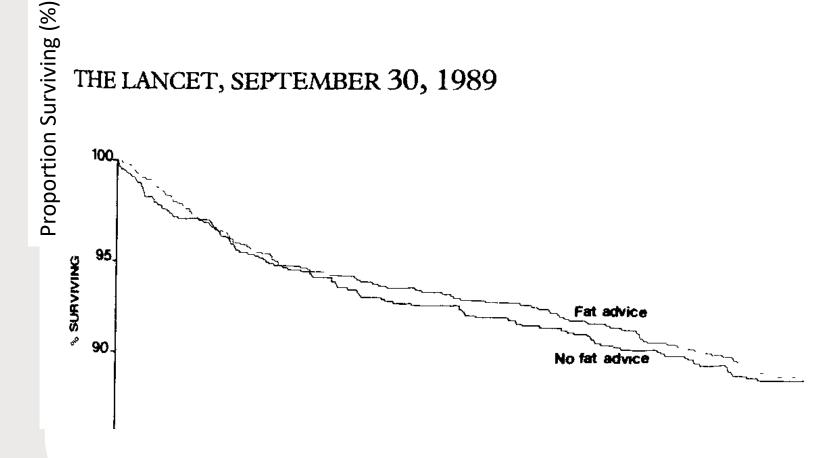



Figure 2. Cumulative survival without nonfatal infarction and without major secondary end points (CO 2).

DART (Diet and Reinfarction Trial)

Effect of 2-3 portions of fatty fish on all-cause mortality post MI

- Post MI randomized comparison on three things:
- Reduce fat and increase poly unsaturated fat
- Increase cereal fiber intake
- Increase fatty fish intake to
 2-3 portions per week
- None of the diets affected composite primary outcome of recurrent MI + death from ischemic heart disease

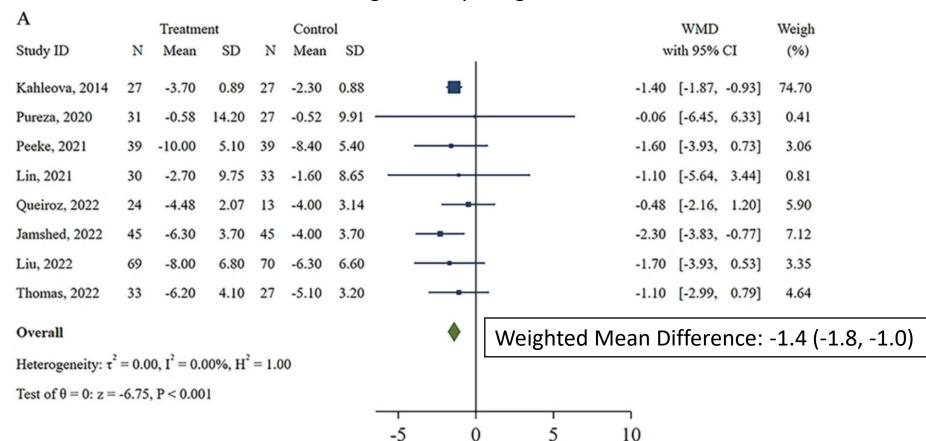
Burr ML et al. 1989 Sep 30;2(8666):757-61. doi: 10.1016/s0140-6736(89)90828-3. PMID: 2571009

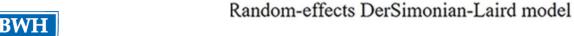
Evidence summary

- The Mediterranean diet is the only diet supported by evidence that it reduces hard cardiovascular outcomes (MI, stroke, CV death)
- There is really only 1 trial of about 7,000 patients that supports this recommendation
- The Lyon heart study and DART are now nearly 35 years old, were small, unblinded, and saw benefits that are too large to be realistic (at least in 2023)

More information on dietary approaches to BP coming shortly...

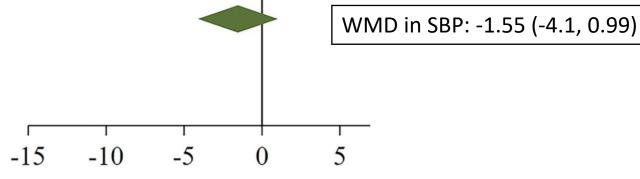
Special Diet Topics


• Time restricted eating



Time Restricted Eating: Meta analysis of RCTs

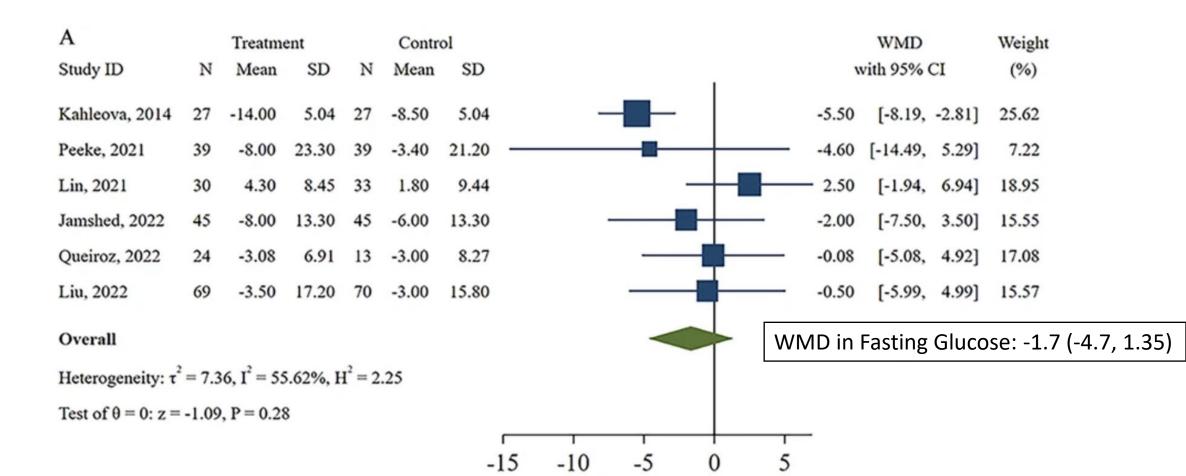
Change in Body Weight


Time Restricted Eating: Effect on SBP

A	Treatment			Control			WMD	Weight
Study ID	N	Mean	SD	N	Mean	SD	with 95% CI	(%)
Pureza, 2020	31	-4.69	15.74	27	-4.59	10.71	-0.10 [-7.14, 6.94]	13.01
Lin, 2021	30	-3.10	14.44	33	0.10	22.17	-3.20 [-12.54, 6.14]	7.38
Jamshed, 2022	45	-8.00	13.30	45	-3.00	13.30	-5.00 [-10.50, 0.50]	21.33
Liu, 2022	69	-8.10	10.00	70	-7.70	10.00	-0.40 [-3.72, 2.92]	58.27

Overall

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

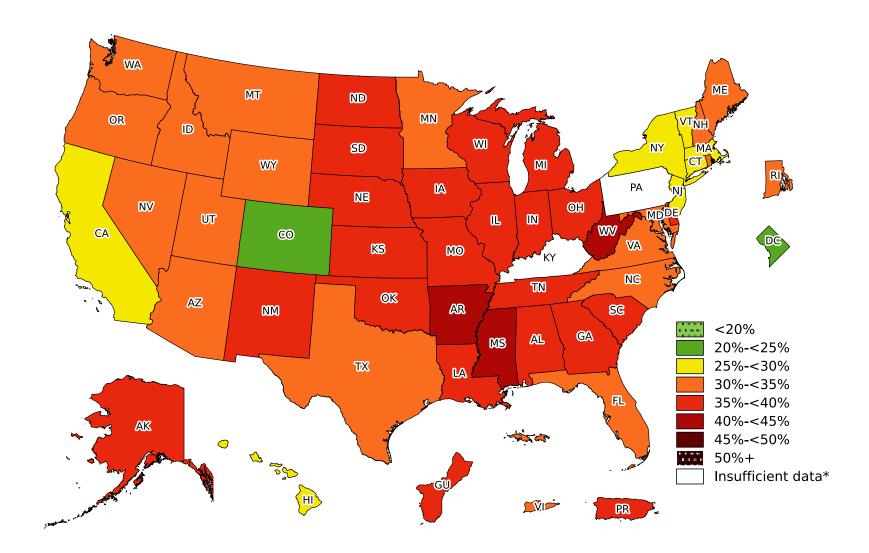

Test of $\theta = 0$: z = -1.20, P = 0.23

Random-effects DerSimonian-Laird model

Time Restricted Eating: Effect on Fasting Glucose

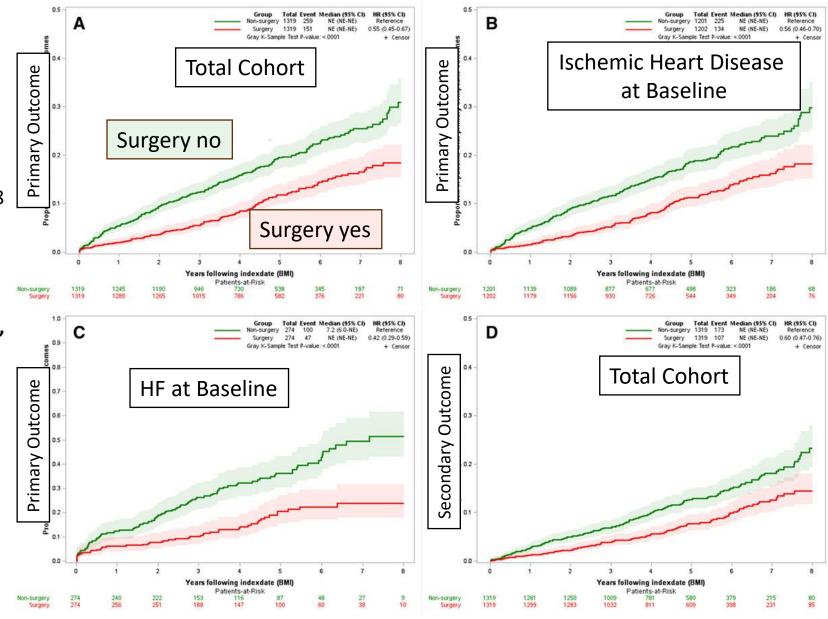
Random-effects DerSimonian-Laird model

No changes in cholesterol observed.



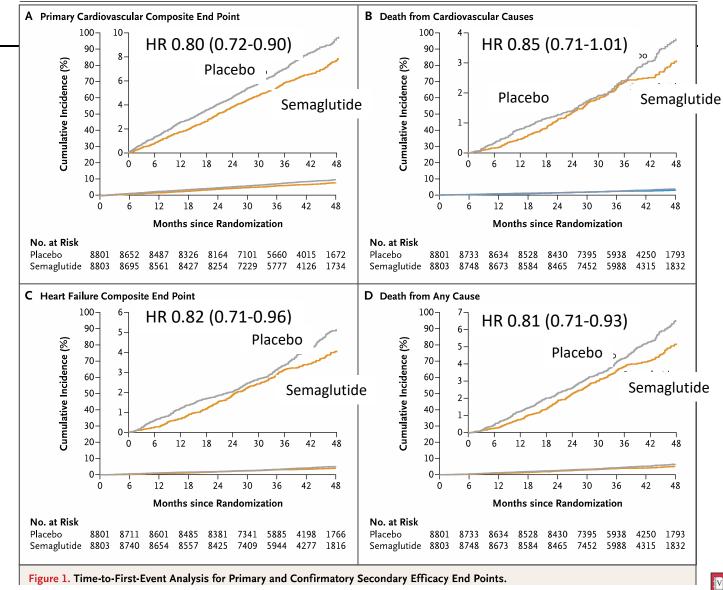
What about treating obesity?

Prevalence of Obesity (BMI ≥ 30) in 2023



Bariatric Surgery and CVD Outcomes

- Propensity matched cohort study of 2638 patients from Ontario
- Patients with established ischemic heart disease or heart failure
- Primary outcome was extended MACE (all cause mortality, MI, coronary revasc, cerebrovascular events, HF hospitalization)
- Secondary outcome MACE (MI, stroke, all-cause mortality)
- HR for primary outcome 0.58 (0.48-0.71)
- HR for secondary outcome 0.66 (0.52-0.84)
- Similar for those with HF or ischemic heart disease at baseline.


SELECT TRIAL: Patients with obesity and CVD but no T2D

- Patients ≥ 45 years with established CVD
- BMI \geq 27 kg/m² no T2D
- Semaglutide 2.4 mg vs. placebo
- 17,604 followed for 40 mos
- 20% reduction MACE

A. Primary: MI, stroke, CV death

B. CV death

C. HF composite outcome

D. All-cause death

STEP-HFpEF: Weight Reduction in Patients with obesity and HFpEF but no T2D

- 529 subjects with BMI≥30 and HFpEF but no T2D
- Randomized to semaglutide 2.4mg weekly or placebo
- Coprimary endpoints: change in KCCQ and body weight

A. Change in Kansas City Cardiomyopathy Questionnaire – clinical summary score

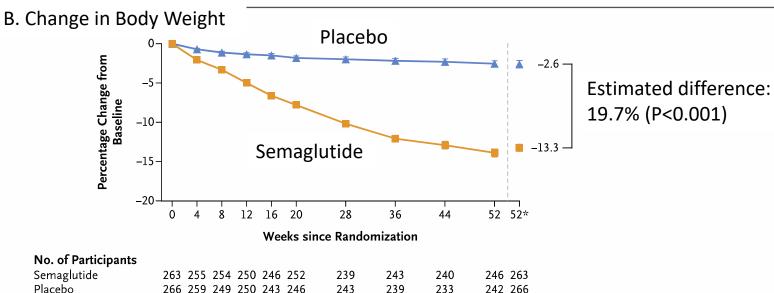
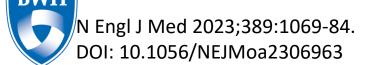
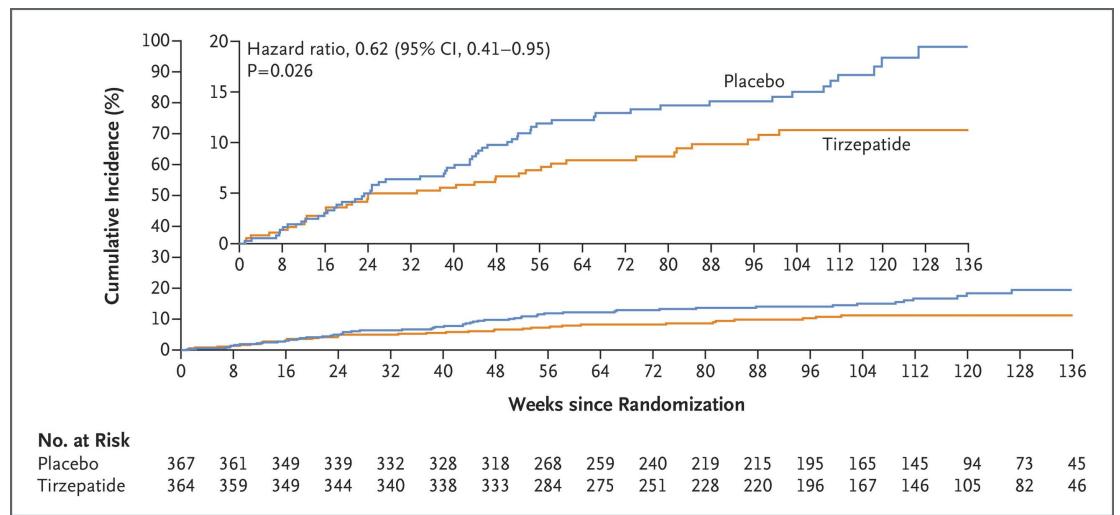
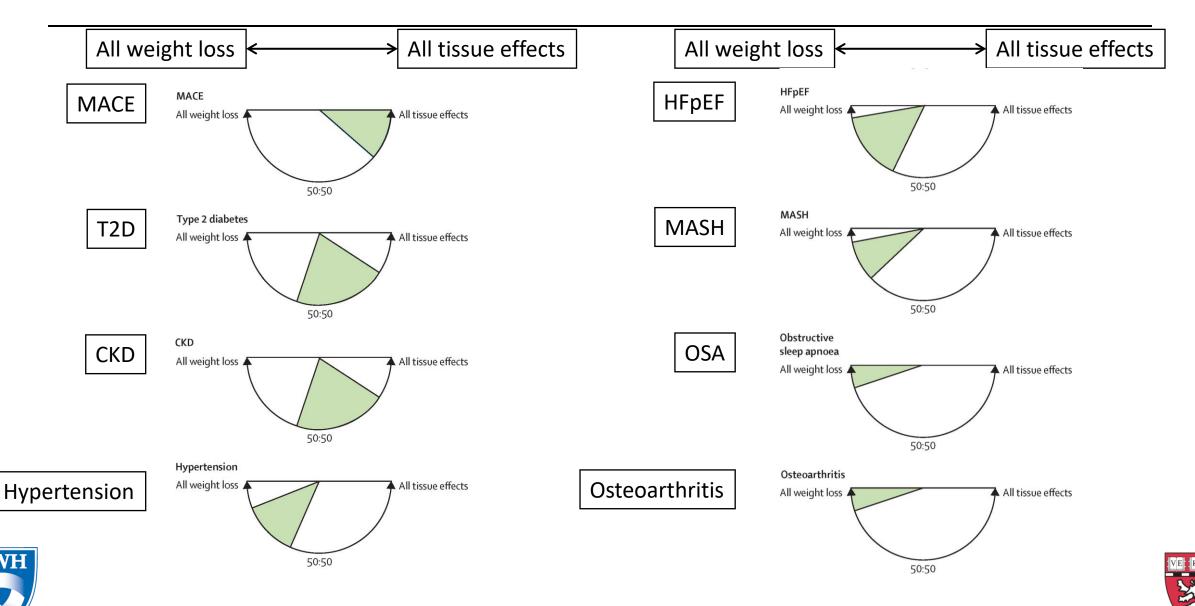




Figure 1. Changes from Baseline to Week 52 in the Dual Primary End Points.

SUMMIT Trial: Tirzepatide in patients with HFpEF and Obesity: Composite of CV Death or a worsening heart failure event



Proven benefits of treatments associated with decent weight loss interventions

- ↑QOL, CR fitness <u>Yes</u>
- T2D remission/prevⁿ Yes (50% to 93%)
- BP reduction Yes (up to 8/4 mmHg)
- Improvement lipids Yes (↓ trigs, ↑HDL-c, LDLc?)
- HF benefits
 Yes (STEP HFpEF /SUMMIT trials)
- Slow CKD progression Yes more data in non-DM needed
- MACE
 Yes SELECT trial
- OSA/OA/ MASLD Yes 5-6 trials
- LONG COVID
 Yes, fatigue benefit

Incretin therapy: Weight loss or direct tissue effects?

Smoking cessation

Cigarette smoking and CV risk

- Help your patients quit smoking!
 - Ask about tobacco use
 - Tell them they should quit
 - Assess whether they're ready to quit
 - Help them quit if they're ready
- Pharmacotherapy
 - Nicotine patch, gum, lozenge, and inhalers
 - Varenicline (Chantix)
 - Buproprion (Wellbutrin, Zyban)

Pharmacotherapy

- Nicotine replacement therapy (patch, gum, lozenge, etc)
- Varenicline
 - 0.5 mg daily x 3 days, then 0.5 mg BID x 4 days, then 1 mg BID for 12-week course
 - The FDA removed the boxed warning about neuropsychiatric side effects in 2016
 - There does not appear to be an increased risk of CV events with varenicline
 - Patients instructed to quit smoking 1 week after starting varenicline

- Buproprion
 - 150 mg daily x3 days, then 150 mg BID for a 12-week course

Blood pressure

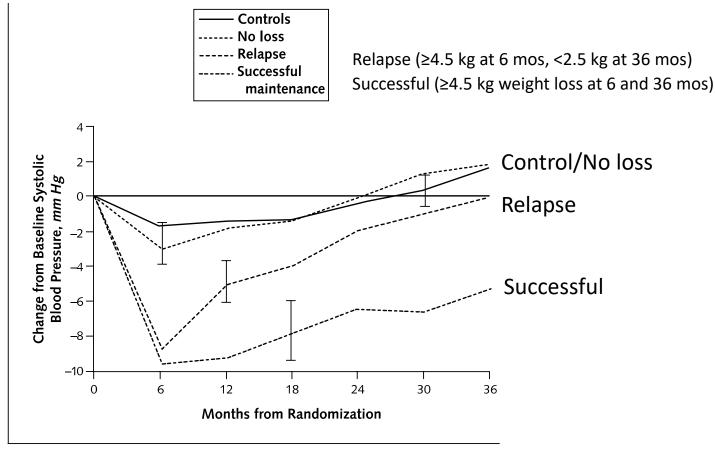
Blood Pressure

- Hypertension is an important contributor to CV risk
- Definition: SBP ≥ 130 mm Hg, DBP ≥ 80 mm Hg
- Goal BP depends on comorbidities such as T2D, CKD, age, etc.

Initial approach to elevated BP

- Exercise
- Weight loss
- DASH diet, Lacto-ovo-vegetarian diet
 - Each diet associated with a ~5 mm Hg reduction in BP
- Avoidance of excessive alcohol intake

Exercise can reduce systolic and diastolic BP: Meta-analysis of RCTs


	_Study or Subgroup		erimenta			ontrol	Total	Weight	Mean Difference IV, Random, 95% CI	Mean Diff IV, Randon		
	1.1.1 ≤8week	Weari	30	TOtal	Wicaii	30	TOtal	weight	IV, Kalluolli, 95/8 Cl	IV, Kalluoli	11, 93 /0 01	
	Masroor, S.2018	-19.1	7.93	15	-0.4	11.09	13	7.0%	-18.70 [-25.94, -11.46]			
≤8 week	Oliveira, J.2016	-11.9		9		21.37	9		-12.10 [-31.58, 7.38]	 		
	Sikiru, L2014	-13.94	6.95	112	2.61	7.85	105			-	16.7 mm Hg/	106 110
	Subtotal (95% CI)			136			127	20.7%	-16.66 [-18.55, -14.76]	•	-16.7 mm Hg (-	18.6, -14.8
	Heterogeneity: Tau ² = 0.00; (Test for overall effect: Z = 17				.77); l²	= 0%						
		.15 (1 4 0	7.00001)									
8-12 week	1.1.2 8-12week	0.0	44.00	00	0.0	40.00	0.5	E 00/	7 40 [47 44 0 041		_	
J 12 WCCK	Dimeo, F.2012		14.99	22	0.6	18.93 9.65	25		-7.40 [-17.11, 2.31]			
	Farahani, A. V.2010	-16.67	10.3		-1.78 4.6	5.27	28		-14.89 [-21.73, -8.05]			
	He, L. 2018 Lima, L. G.2017	-15.6	5.93 13.4	20 15		11.91	22 14					
	Maruf, F.A.2014b	-4.8 -18.77	13.4		-8.81		43		-9.80 [-19.01, -0.59] -9.96 [-16.21, -3.71]			
	Molmen-Hansen,H.E. 2012	-10.77	12.4	25		14.24	25	6.9%	-10.00 [-17.40, -2.60]			
	Tsai,J.C.2004		11.85	52		16.03	50		-9.50 [-14.99, -4.01]			
	Westhoff ,T.H2008	-7	9.1	12	0.5	11.5	12	6.2%	-7.50 [-15.80, 0.80]			
	Subtotal (95% CI)		0.1	203	0.0	11.0	219	58.4%			-11.7 mm Hg (-	·15.9, -7.5)
	Heterogeneity: Tau ² = 23.92; Chi ² = 23.03, df = 7 (P = 0.002); I ² = 70%									<u> </u>		
	Test for overall effect: Z = 5.4				,							
>12 week	1.1.3 >12week											
	Duncan, Jj 1985	-12.4	6.73	44	-6.2	6.58	12	9.9%	-6.20 [-10.42, -1.98]			
	Tsuda, K. 2003	-10		8	1	2.65	8	11.0%	-11.00 [-14.02, -7.98]			
	Subtotal (95% CI)			52			20	20.8%	-8.84 [-13.52, -4.15]			
	Heterogeneity: Tau ² = 8.01;	Chi ² = 3.2	9, df = 1	(P = 0)	.07); l ²	= 70%						
	Test for overall effect: Z = 3.	70 (P = 0.	0002)									ı
	Total (95% CI)			391			366	100.0%	-12.26 [-15.17, -9.34]	•	-12.3 mm Hg (-	15.2, -9.3)
	Heterogeneity: Tau ² = 17.76;	Chi ² = 47	798 df =		< 0.000)()1)· 2:		100.070	.2.20 [10111, 0.04]			1
	Test for overall effect: Z = 8.2			12 (1	- 0.000)	10/0			-20 -10 0	10 20	
	Test for subgroup differences			= 2 (P	= 0.003	3) I ² = 8	3 2%			Favours [experimental] I	Favours [control]	VE

Weight change and BP reduction

Meta-analysis: 1 kg weight loss -> 1 mm Hg drop in BP

Data from TOHP II

Data are adjusted for age, ethnicity, and sex, according to patterns of weight change. Usual care controls were not assigned to intervention. Participants with successful maintenance of weight loss were defined as those who lost 4.5 kg or more at 6 months and maintained at least 4.5 kg of weight loss at 36 months. Participants with relapse were those who lost at least 4.5 kg at 6 months but whose weight loss at 36 months was less than 2.5 kg. Participants with no weight loss had weight loss of 2.5 kg or less at 6 and 36 months. Error bars represent 95% CIs.

Stevens et al. Ann Intern Med. 2001;134:1-11. Neter et al. Hypertension 2003;42:878

DASH diet: 5 mmHg blood pressure reduction

Key Points

- Fresh fruits and vegetables
- Lean meats, and less of them
- Avoid saturated fats
- Avoid processed or prepared foods
- Avoid foods with salt
- Associated with a ~5 mm Hg reduction in BP

Food Group	Daily Servings	What is "1 serving"?
Grains and grain products	7-8	1 slice bread, 1 cup cereal
Vegetables	4-5	1 cup raw, ½ cup cooked
Fruits	4-5	1 medium fruit, 6 ounces fruit juice
Lowfat or fat-free dairy	2-3	8 ounces milk, 1 cup yogurt
Lean meats, poultry and fish	2 or fewer	3 ounces cooked lean meat, skinless poultry, fish
Nuts, seeds, dry beans	4-5 per week	1/3 cup or 1.5 ounces nuts ½ cup cooked dry beans
Fats and oils	2-3	1 teaspoon margarine, 1 tablespoon lowfat mayo, 2 tablespoons light salad dressing
Sweets	5 per week	1 tablespoon sugar, jelly, or jam

NHLBI Guide to Lowering BP: https://www.nhlbi.nih.gov/files/docs/public/heart/hbp_low.pdf

Pharmacotherapy for elevated BP

- ACE inhibitor OR ARB
- Dihydropiridine calcium channel blocker
- Diuretic (indapamide, chlorthalidone, HCTZ)
- Avoid beta blockers as first line therapy

Risk Stratification and Lipid Lowering Therapy

Lipid Lowering Therapy and Risk Prediction

- Using the AHA/ACC Pooled Cohort Equation for CV Risk Prediction
- Using the novel PREVENT score CV Risk Prediction
- Deciding who to treat
- Deciding when to treat them
- Risk enhancers
- Coronary calcium score

Risk Stratification: Risk Calculators

- ACC/AHA Pooled Cohort Equation
- UK QRISK 3
- European Society of Cardiology: SCORE
- PREVENT (published 11/2023)

Risk Stratification

- ** Treat all patients with an LDL-C ≥ 190 mg/dL ** with a high-intensity statin
- ** Treat all patients with diabetes and LDL-C ≥ 70 mg/dL with a moderate intensity statin

- For patients age 40-75 years
- Low risk: <5% risk of a major CV event in the next 10 years
- Borderline risk 5-7.4% risk of a major CV event in the next 10 years
- Intermediate risk 7.5 to 19.9% risk of a major CV event in the next 10 years
- High risk: 20+%

CKM (Cardiovascular Kidney Metabolic) Risk

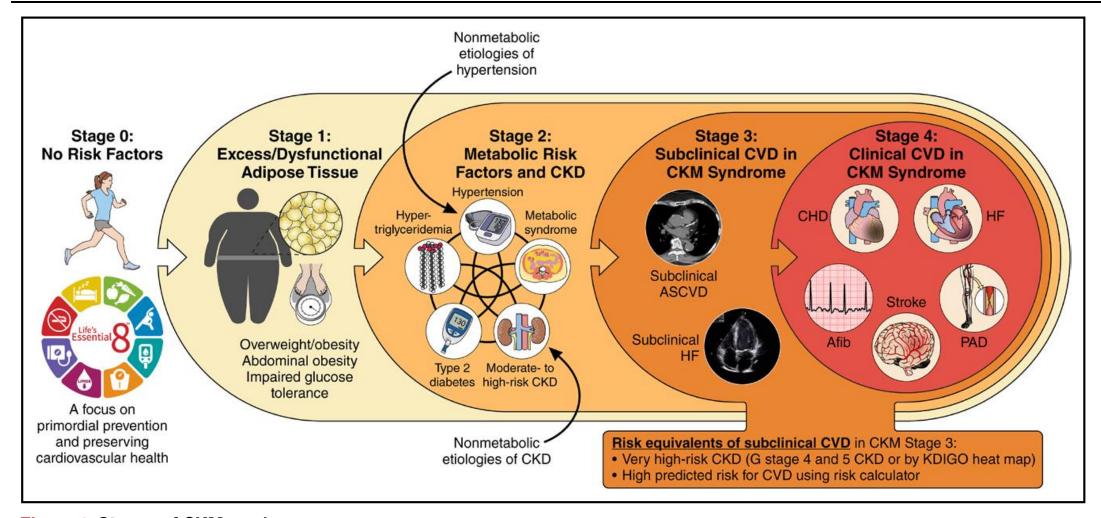


Figure 1. Stages of CKM syndrome.

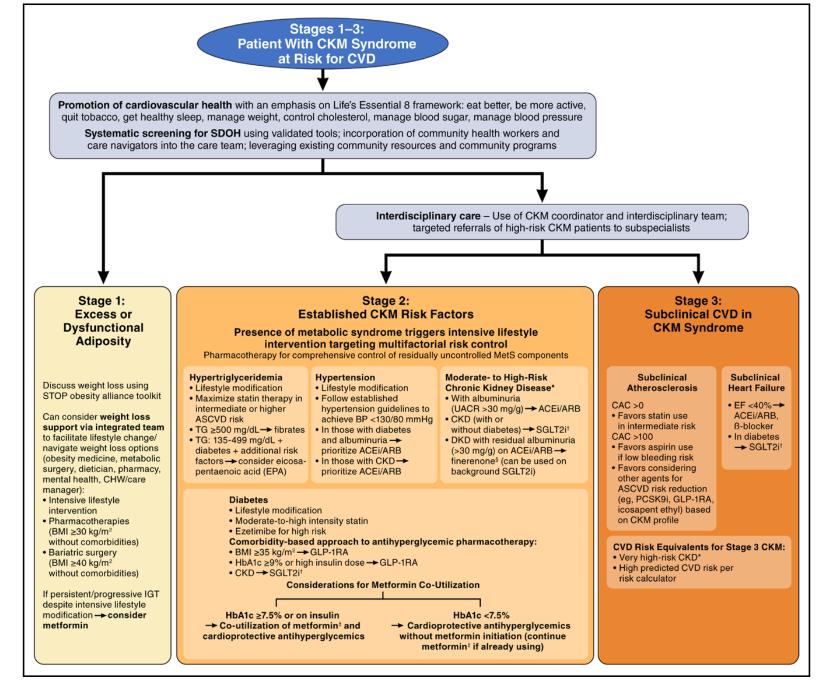


Figure 3. Algorithm for the manager Nerty of policy length of the manager Nerty of policy length of the manager of the manager

Risk Enhancing Factors: Consider therapy for those at intermediate risk with a risk enhancer

Risk Enhan	cing Factors
Family history of premature CAD (men < 55, women <65)	eGFR 15-59 ml/min/1.73m ²
LDL-C, 160-189 mg/dL Non-HDL-C 190-219 mg/dL	Triglycerides ≥175 mg/dL
Low HDL-C	hsCRP ≥ 2.0 mg/L
Hypertension	Elevated Lp(a) (≥ 50 mg/dL or ≥ 125 nmol/L)
Hyperglycemia	Abdominal obesity
ABI < 0.9	Chronic inflammatory conditions (RA, psoriasis, HIV)
High Apo B (≥130 mg/dL)	History of premature menopause
Low SES	South Asian ancestry

Table 2. Risk-Enhancing Factors for CKM Syndrome*

Chronic inflammatory conditions (eg, psoriasis, RA, lupus, HIV/AIDS)

High-risk demographic groups (eg, South Asian ancestry, lower socioeconomic status)

High burden of adverse SDOH

Mental health disorders (eg, depression and anxiety)

Sleep disorders (eg, obstructive sleep apnea)

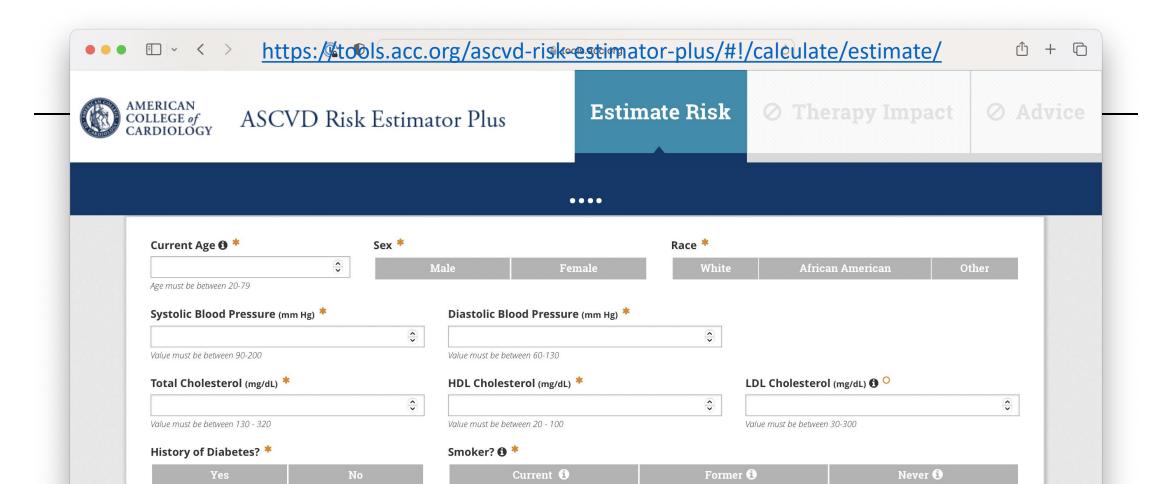
Sex-specific risk enhancers (beyond gestational diabetes consideration in stage 1)

History of premature menopause (age <40 y)

History of adverse pregnancy outcomes (eg, hypertensive disorders of pregnancy, preterm birth, small for gestational age)

Polycystic ovarian syndrome

Erectile dysfunction


Elevated high-sensitivity C-reactive protein (≥2.0 mg/L if measured)

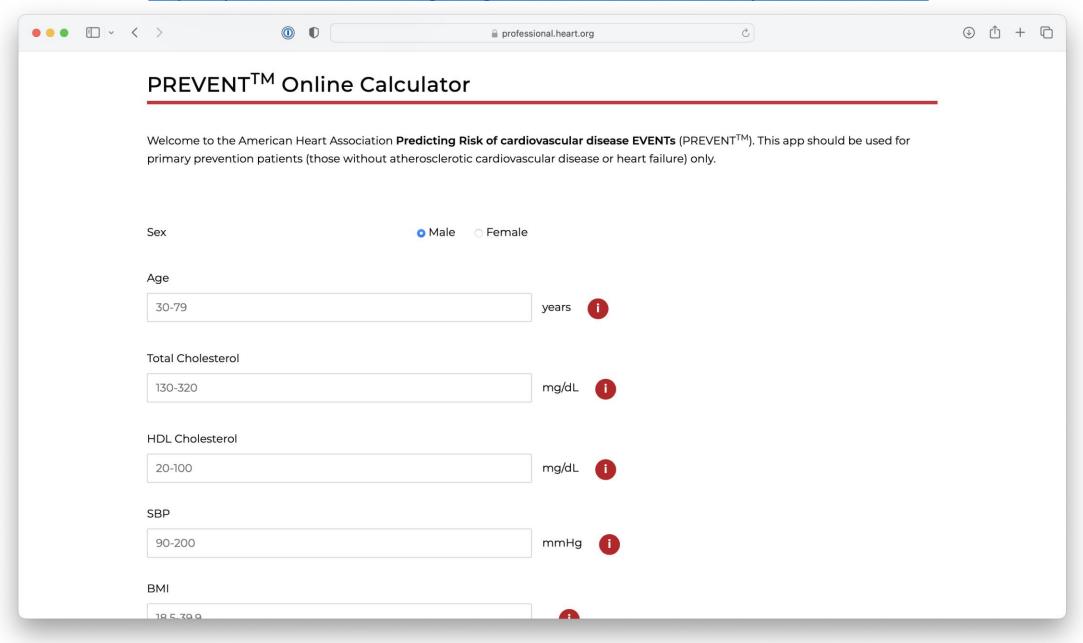
Family history of kidney failure; family history of diabetes

CKM indicates cardiovascular-kidney-metabolic; RA, rheumatoid arthritis; and SDOH, social determinants of health.

*These factors increase the likelihood of progression along CKM stages with associated risk for cardiovascular disease and kidney failure.

On Aspirin Therapy? 🗗 🔾

On a Statin? 🛈 🔾


Do you want to refine current risk estimation using data from a previous visit? •

On Hypertension Treatment? *

https://professional.heart.org/en/guidelines-and-statements/prevent-calculator

Patient ARS: What's the risk of cardiovascular disease?

- 46 yo F of South Asian ancestry
- BMI 38
- Father died abruptly from an MI at the age of 50
- Vegetarian, protein from lentils and cheese
- Refined carbohydrates (usually white rice)
- Exercises 4 days a week on the elliptical
- BP 110/74
- TC 222, TG 116, HDL 47, cLDL 152, dLDL 142
- HbA1c 5.3

What do I do next?

Outcome and Timeline	Pooled Cohort	PREVENT equation
	Equation	AHA Warning Label
10-year ASCVD risk	1.0%	Use, please – but wait, do
"Lifetime" ASCVD risk	30%	not use!
30-year risk of ASCVD		PREVENT typically has
		lower risk estimates than PCE, potentially leading to
10-year risk of CVD (ASCVD + HF)		less statin prescription.
30-year risk of CVD (ASCVD + HF)		These estimates are also more accurate! So what do
		we do?
10-year risk of heart failure (HF)		We revise the guidelines! A
30-year risk of heart failure (HF)		revision with new thresholds coming soon.

10-year risk of 1.0 to 1.3%: What do you recommend?

- A. Encourage exercise, diet, weight loss
- B. Start a statin (LDL = 152 mg/dL, HbA1c 5.3%)
- C. Order other biomarker testing (e.g. hsCRP, apoB, or Lp(a))
- D. Order a coronary calcium scan
- E. Start GLP-1RA pharmacotherapy for weight loss
- F. Start aspirin

CAC: When should I order a Coronary Artery Calcium Scan?

- Borderline Risk (5-7.4%)
- Intermediate Risk patients (7.5-19.9%)
- When there is a question about whether to initiate statin therapy

You should NOT do a follow up scan to follow progression!

CAC results

- O Agatston units No identifiable disease
- 1 to 99 Agatston units Mild disease (MESA event rate 12.2%)
- 100 to 399 Agatston units Moderate disease (MESA event rate 21%)
- ≥400 Agatston units Severe disease

MESA Calculator: https://www.mesa-nhlbi.org/Calcium/input.aspx

What should I do about aspirin?

Who should take aspirin?

U.S. Preventive Service Task Force

Recommendation Summary

Population	Recommendation	Grade
Adults aged 40 to 59 years with a 10% or greater 10-year cardiovascular disease (CVD) risk	The decision to initiate low-dose aspirin use for the primary prevention of CVD in adults aged 40 to 59 years who have a 10% or greater 10-year CVD risk should be an individual one. Evidence indicates that the net benefit of aspirin use in this group is small. Persons who are not at increased risk for bleeding and are willing to take low-dose aspirin daily are more likely to benefit.	C
Adults 60 years or older	The USPSTF recommends against initiating low-dose aspirin use for the primary prevention of CVD in adults 60 years or older.	D

Aspirin for Primary Prevention

Figure 1. Cardiovascular and Bleeding Outcomes in All Participants

		Aspirin		No Aspirin		Absolute Risk	I			
Cardiovascular Outcomes	No. of Studies	No. of Events	No. of Participants	No. of Events	No. of Participants	Reduction, % (95% CI)	HR (95% CrI)	Favors Aspirin	Favors No Aspirin	J ²
CV death, MI, stroke	13	2911	79717	3342	80057	0.41 (0.23 to 0.59)	0.89 (0.84-0.94)		i ! !	0
All-cause mortality	13	3622	81623	3588	80057	0.13 (-0.07 to 0.32)	0.94 (0.88-1.01)	-	! ! +	0
CV mortality	13	995	81623	997	80057	0.07 (-0.04 to 0.17)	0.94 (0.83-1.05)		 	0
Myocardial infarction	13	1469	81623	1599	80057	0.28 (0.05 to 0.47)	0.85 (0.73-0.99)		1 ! !	0
Ischemic stroke	10	831	65316	942	63752	0.19 (0.06 to 0.30)	0.81 (0.76-0.87)			18
									1	
							0.5		ı io (95% Crl)	2

		Aspirin		No Aspirin		Absolute Risk					
Bleeding Outcomes	No. of Studies	No. of Events	No. of Participants	No. of Events	No. of Participants	Increase, % (95% CI)	HR (95% CrI)	Favors Aspirin	Favors No Aspirin	J ²	 2
Major bleeding	11	1195	74715	834	73 143	0.47 (0.34 to 0.62)	1.43 (1.30-1.56)				1
Intracranial bleeding	12	349	80985	257	79419	0.11 (0.04 to 0.18)	1.34 (1.14-1.57)				0
Major GI bleeding	10	593	70336	380	70465	0.30 (0.20 to 0.41)	1.56 (1.38-1.78)				2
								1 1 1		\neg	
	C/ d	00+b [VII straka	ADD —	0.41		0.5	1 Hazard Rati	l o (95% CrI)	2	-1

CV death, MI, stroke ARR = 0.41 Major bleeding: ARI = 0.47

Consider aspirin use among those

- Who are at elevated risk (≥20% 10-year risk) among whom the absolute CV benefit may be worth the risk of bleeding
- Who are at high risk for colorectal cancer
- Who are concerned about MI risk but less concerned about bleeding risk
- Among those who have a CAC score ≥ 100

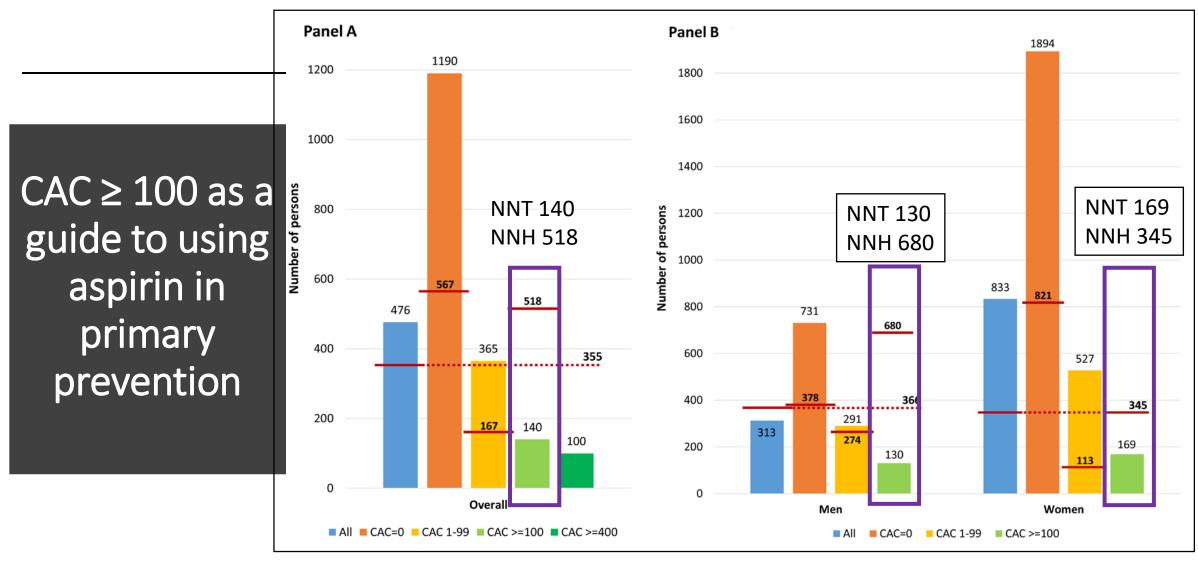


Figure 3. Number needed to treat with low-dose aspirin during 5 years to prevent 1 CVD event and number needed to cause a major bleeding event by baseline CAC score, overall (A) and by sex (B).

Values are presented as number of persons. Follow-up was censored at 5 years. Red horizontal lines represent NNH thresholds. Participants with CAC≥400 thresholds are presented as number of persons. Follow-up was censored at 5 years. Red horizontal lines represent NNH thresholds. Participants with CAC≥400 was computed only overall. CAC indicates a nary artery calcium; CVD, cardiovascular disease; NNH, number needed to harm; and NNT, number needed to treat.

Conclusion

- Behaviors are an important tool to prevent cardiovascular disease but the evidence supporting specific diet recommendations is sparse, tends to be from observational studies, and subject to bias and confounding
- Diet, exercise, and weight loss are effective first line therapy for treating hypertension
- Risk prediction is a valuable tool but has important limitations and requires the use of clinical judgement
- Statins remain our most effective tool for preventing ASCVD events. Aspirin reduces the risk of CV events (particularly MI) but also increases the risk of bleeding. Patients who derive the most benefit are also those at the highest risk for adverse bleeding events.
- The treatment and prevention of cardiovascular, kidney, and metabolic conditions is among the most rapidly evolving and exciting spaces in medicine right now

Thank you!

Brendan M. Everett, MD, MPH beverett@bwh.harvard.edu

Associate Professor of Medicine Harvard Medical School

References

- PREDIMED Trial: N Engl J Med 2018;378:e34. DOI: 10.1056/NEJMoa1800389
- Ndumele C et al. Circulation. 2023;148:1606–1635. DOI: 10.1161/CIR.000000000001184
- MESA Study. Circulation. 2020;141:1541–1553. DOI: 10.1161/CIRCULATIONAHA.119.045010
- Pooled cohort equation calculator: https://tools.acc.org/ascvd-risk-estimator-plus/#!/calculate/estimate/
- PREVENT calculator: https://professional.heart.org/en/guidelines-and-statements/prevent-calculator
- SELECT Trial: N Engl J Med 2023;389:2221-32. DOI: 10.1056/NEJMoa2307563
- STEP-HFpEF Trial: N Engl J Med 2023;389:1069-84. DOI: 10.1056/NEJMoa2306963
- SUMMIT trial: N Engl J Med 2025;392:427-37. DOI: 10.1056/NEJMoa2410027

